Przedział ufności dla średniej

\(\)

Przedział ufności dla średniej pozwala nam oszacować prawdopodobny przedział, w którym znajduje się średnia danego rozkładu normalnego, przy czym wariancja rozkładu może być znana lub nieznana.

W większości przypadków wyliczając wartość dystrybuanty korzystamy z rozkładu normalnego. Jedynym wyjątkiem jest sytuacja gdy ilość obserwacji n < 30 oraz wariancja populacji \( \sigma^{2} \) jest nieznana.

Kiedy wariancja populacji jest nieznana?
Kiedy musimy ją wyliczyć sami lub została ona wyliczona na podstawie danych. Jeżeli w zadaniu jest napisane, że wariancja została oszacowana/wyestymowana na podstawie danych to wariancja dotyczy konkretnej próbki danych, a nie całej populacji. Jeżeli w zadaniu jest mowa o wariancji populacji to najczęściej jest to napisane, że dane pochodzą z rozkładu normalnego o wariancji \( \sigma^{2} \). Gdy wariancja jest wyliczona na podstawie danych zamiast pisać \( \sigma^{2} \) używa się \( s^{2} \).

Definicja:

Warunki:Przedział ufności
Znane \( \sigma\), n-dowolne\( ( \overline{X} - u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} , \overline{X} + u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} ) \)
Nieznane \( \sigma\), \(n \leq 30 \)\( ( \overline{X} - u_{1- \frac{\alpha}{2}} \frac{s}{\sqrt{n}} , \overline{X} + u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} ) \)
Nieznane \( \sigma\), n < 30\( ( \overline{X} - t_{\alpha,n-1} \frac{s}{\sqrt{n}} , \overline{X} + t_{\alpha,n-1} \frac{s}{\sqrt{n}} ) \)

\( \overline{X} \) – średnia
\( \sigma^{2} \) – wariancja populacji
\( s^{2} =  \frac{1}{n-1} \sum\limits_{i=1}^n (X_{i}- \overline{X})^{2} \) – wariancja wyliczona z próbki

n – liczebność próby
\( 1-\alpha \) – poziom ufności
\( \alpha \) – poziom istotności
\( u_{1- \frac{\alpha}{2}} \) – dystrybuanta rozkładu normalnego dla \( 1-\frac{\alpha}{2} \)
\( t_{\alpha,n-1} \) – dystrybuanta rozkładu t-studenta dla \( 1-\alpha \) i n-1 stopni swobody

Zadanie 1:
W 25- elementowej próbie prostej, złożonej z drzew losowo wybranych z lasu, otrzymano: \( \overline{X} = 37.3\) cm oraz \( s^{2} =13.5 cm^{2}\). Zakładamy, że rozkład średnicy drzew w tym lesie jest w przybliżeniu normalny. Wyznaczyć 96%-ową realizację przedziału ufności dla przeciętnej liczby drzew w tym lesie.

Dalsza część treści jest płatna. Dokonaj zakupu lub zaloguj się

Regulamin dostępny tutaj
Dowiedz się więcej o korepetycjach kliknij
Zaloguj się lub Wykup
Sprawdź Wykup
Anuluj
30dniowy abonament, 29zł
Abonament do końca sesji 49zł
7dniowy dostęp do Przedziałów Ufności i Testowania Hipotez, 19zł
30dniowy abonament + korepetycje, 49zł
Odblokuj dostęp do wszystkich treści na 30 dni.
Sprawdź
Odblokuj dostepDokonując zamówienia potwierdzasz zapoznanie się z regulaminem
Odblokuj dostęp do końca sesji (17-02-2019).
Sprawdź
Odblokuj dostepDokonując zamówienia potwierdzasz zapoznanie się z regulaminem
Odblokuj dostęp do treści związanych z przedziałami ufności oraz testowaniem hipotez Odblokuj dostepDokonując zamówienia potwierdzasz zapoznanie się z regulaminem
Odblokuj dostęp do wszystkich treści oraz do korepetycji online
Sprawdź
Odblokuj dostepDokonując zamówienia potwierdzasz zapoznanie się z regulaminem
Anuluj

Zadanie 2:
Ankieter zapytał szesnastu studentów ile litrów kawy każdy z nich wypił w tygodniu poprzedzającym kolokwium z statystyki. Przedział ufności dla wartości oczekiwanej na poziomie 0.1 z pobranej próby wyniósł (2,8).
Oblicz średnią i wariancję ilości litrów wypitej kawy w tej próbie, zakładając że pochodzi z rozkładu normalnego.

Treść dostępna po zalogowaniu

Zadanie 3:
Średnia cena 50 losowo wybranych podręczników akademickich wyniosła 28.40 PLN. Wiadomo, ze odchylenie standardowe cen podręczników wynosi 4.75 PLN. Wyznaczyć 95% przedział ufności dla średniej ceny podręcznika akademickiego zakładając, ze rozkład cen jest rozkładem normalnym.

Treść dostępna po zalogowaniu

Komentarze:

  1. Dlaczego z tablicy rozkładu t-studenta należy odczytac wartosc t 0,02, a nie t 0,01? Przecież we wzorze mamy t alfa/2, więc skoro alfa=0,02, to na tablicy nie powinnismy szukac wartosci t 0,01;24?

  2. Dokładnie tak, zamiast 98% przedział ufności chodziło mi o 96%. Dziękuję, już poprawiłem.

Dodaj komentarz

Twój adres email nie zostanie opublikowany.