google5f1fc50f0b9bdfae.html

Zadania rozkład normalny

Zadania dotyczące standardowego rozkładu normalnego  N(m,\sigma) są zazwyczaj proste i różnią się od zadań dotyczących rozkładu normalnego N(0,1) tym, że najpierw trzeba zastosować standaryzację rozkładu normalnego.

Jeśli masz przykład, który nie został tutaj omówiony śmiało opisz go w komentarzu. Chętnie przeanalizuję przykład i wrzucę na stronę.

Przy rozwiązywaniu zadań będę korzystał z:
Tablicy rozkładu normalnego
Triki- tablica N(0,1).
Standaryzacja rozkładu normalnego.

Przykład 1:
Zmienna losowa X ma rozkładu normalny  N(10,2) . Wyznacz prawdopodobieństwa:

  1.  P(X < 13)
  2.  P(X > 9)
  3.  P(6 < X < 14)
  4.  P(2 < X < 4)


Przykład 2:
Zmienna losowa X ma rozkład  N(0, \frac{1}{2}) . Zmienna losowa Y jest z
rozkładu  Y \sim exp(X) . Oblicz  \large P(1 < Y < e) :

Przykład 3:
Długość produkowanych detali ma rozkład  N(0.9, 0.03) . Norma przewiduje wyroby o wymiarach  0.9 \pm 0.05 . Oblicz jaki procent wyrobów nie spełnia wymogów.


Przykład 4:
Wiadomo, że odchylenie wagi noworodków wynosi 500g. Jak rozmiar próby jest potrzebny aby odchylenie standardowe średniej wagi noworodków było mniejsze niż 100g.

Przykład 5(od użytkownika Sylwus):
Pewien zakład produkcyjny zatrudnia 100 pracowników, których staż pracy jest zgodny z rozkładem normalnym N(10 lat, 5 lat). Obliczyć ilu pracowników miało staż:
a) krótszy niż 3 lata
b) dłuższy niż 15 lat

Przykład 6(od Michała):
Dokonano pomiaru wagi wśród wylosowanych 150 dzieci. Otrzymane wyniki charakteryzują się rozkładem normalnym o średniej równej 65 kg i wariancją równą 100 kg . W powyższym przykładzie dominanta ma wartość...

Przykład 7(od Michała)
W teście, którego wyniki charakteryzują się średnią równą 20 i odchyleniem standardowym równym 7 pewien słuchacz zdobył 25 punktów. Jaki procent studentów uzyskało gorszy wynik od owego delikwenta ? (rozkład wyników był rozkładem normalnym).

Przykład 8(Od Kamili)
Poziom kwasu moczowego w osoczu podlega rozkładowi normalnemu. W przedziale od 3,0mg/100ml do 6,7mg/100ml, symetrycznym względem najczęściej występującej wartości zawiera się 95% wartości poziomów kwasu moczowego w osoczu. Obliczyć prawdopodobieństwo tego, ze poziom kwasu moczowego w osoczu jest większy niż 5mg/100ml.

 

9 comments:

  1. Pewien zakład produkcyjny zatrudnia 100 pracowników, których staż pracy jest zgodny z rozkładem normalnym N(10 lat, 5 lat). Obliczyć ilu pracowników miało staż: a) krótszy niż 3 lata, b) dłuższy niż 15 lat

  2. Jeśli byłaby taka możliwość to proszę o rozjaśnienie poniższych przykładów z rozkładu normalnego:
    1. Dokonano pomiaru wagi wśród wylosowanych 150 dzieci. Otrzymane wyniki charakteryzują się rozkładem normalnym o średniej równej 65 kg i wariancją równą 100 kg . W powyższym przykładzie dominanta ma wartość...
    2. Dokonano pomiaru wagi wśród wylosowanych 150 dzieci. Otrzymane wyniki charakteryzują się rozkładem normalnym o średniej równej 65 kg i wariancją równą 100 kg . W badanej grupie wagę powyżej 72 kg posiada prawdopodobnie (z dokładnością do 1%)?
    3. W teście A o średniej=20 i odchyleniu standardowym=5 Jaś uzyskał wynik= 15. W teście B o średniej 10 i odchyleniu standardowym=3 Jaś uzyskał wynik=8. W którym teście Jaś uzyskał gorszy wynik?
    4. W pewnym teście o wariancji =100 Jaś zdobył 15 pkt. Okazało się, że nieco ponad 84% studentów miało wyniki lepsze od niego. Ile wynosił średni wynik w tym teście ?
    5. Dokonano pomiaru wagi wśród wylosowanych 150 dzieci. Otrzymane wyniki charakteryzują się rozkładem normalnym o średniej równej 65 kg i wariancją równą 100 kg . W badanej grupie wagę poniżej 80 kg posiada w przybliżeniu (z dokładnością do 1 osoby) ...
    6. W pewnym teście o średniej równej 50 Jerzy zdobył 62 pkt. Okazało się, że ok. 84,1 % studentów miało wyniki gorsze od niego. Ile wynosi wariancja w tym teście ?
    7. W teście, którego wyniki charakteryzują się średnią równą 20 i odchyleniem standardowym równym 7 pewien słuchacz zdobył 25 punktów. Jaki procent studentów uzyskało gorszy wynik od owego delikwenta ? (rozkład wyników był rozkładem normalnym).
    Bardzo proszę i z góry dziękuję za wyjaśnienie.

  3. Cześć,
    Wrzuciłem odpowiedzi do 1 i 7. 2,5 są podobne do 7 więc sobie poradzisz. 3 i 4 zrobię za jakiś czas. Pozdrawiam:)

  4. Witaj:)
    To świetna strona, bardzo pomocna, jednak nie ze wszystkim sobie radzę. Czy mógłbyś pomóc w takim zadaniu:
    . a) Aby otrzymać ocenę dobrą z egzaminu ze statystyki należy prawidłowo rozwiązać 78% do 85% zadań testowych. Zakładając, że wyniki testu dla studentów zdających egzamin w I terminie ma rozkład normalny N(μ,σ), obliczyć jaki odsetek studentów otrzyma ocenę dobrą w I terminie?
    b) Ilu studentów należy wylosować do próby, aby z błędem nie przekraczającym x% ocenić odsetek studentów, którzy uzyskają pozytywny wynik egzaminu ze statystyki? Przyjąć poziom ufności y.

    μ=59 σ=8,7 x=4,2 y=0,92

    Z góry dziękuję i pozdrawiam.

  5. Cześć :) nie mogę sobie z tym poradzić:

    Poziom kwasu moczowego w osoczu podlega rozkładowi normalnemu. W przedziale od 3,0mg/100ml do 6,7mg/100ml, symetrycznym względem najcześciej występującej wartości zawiera sie 95% wartości poziomów kwasu moczowego w osoczu. Obliczyć prawdopodobieństwo tego, ze poziom kwasu moczowego w osoczu jest większy niz 5mg/100ml.

  6. Cześć :)
    Czy mogłabym prosić o pomoc z takim zadaniem:
    Dla X:N(m=1, σ=3) oraz zdarzeń A=(-∞,3) i B=(2,5) oblicz prawdopodobieństwa P(A), P(B), P(A ᴗ B), P(Aᴖ B) posługując się tablicami funkcji Laplace'a oraz naszkicuj wykres.

Dodaj komentarz

Twój adres email nie zostanie opublikowany.